Absence of an appreciable iron isotope effect on the transition temperature of the optimally doped SmFeAsO(1-y) Superconductor.

نویسندگان

  • Parasharam M Shirage
  • Kiichi Miyazawa
  • Kunihiro Kihou
  • Hijiri Kito
  • Yoshiyuki Yoshida
  • Yasumoto Tanaka
  • Hiroshi Eisaki
  • Akira Iyo
چکیده

We report the iron (Fe) isotope effect on the transition temperature (T(c)) in oxygen-deficient SmFeAsO(1-y), a 50-K-class, Fe-based superconductor. For the optimally doped samples with T(c) = 54  K, a change of the average atomic mass of Fe (M(Fe)) causes a negligibly small shift in T(c), with the Fe isotope coefficient (α(Fe)) as small as -0.024 ± 0.015 (where α(Fe)=-d lnT(c)/dlnM(Fe)). This result contrasts with the finite, inverse isotope shift observed in optimally doped (Ba,K)Fe2As2, indicating that the contribution of the electron-phonon interaction markedly differs between these two Fe-based high-T(c) superconductors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse iron isotope effect on the transition temperature of the (Ba,K)Fe2As2 superconductor.

We report that the (Ba,K)Fe(2)As(2) superconductor (transition temperature, T(c) approximately 38 K) has an inverse iron isotope coefficient alpha(Fe) = -0.18(3) (where T(c) approximately M(-alphaFe) and M is the iron isotope mass); i.e., the sample containing the large iron isotope mass depicts a higher T(c). Systematic inverse shifts in T(c) were clearly observed between the samples using thr...

متن کامل

Experimental aspects of Alpha, Beta angles distortion on superconductivity in 1111-type Iron-based superconductor

In this research, we aim to clarify the relationship between the structural distortion due to doping and the superconductivity existence in the FeAs4 structure. For this, we have prepared polycrystalline of NdFeAsO0.8F0.2, NdFeAs0.95Sb0.05O0.8F0.2 and Nd0.99Ca0.01FeAsO0.8F0.2 samples by one-step solid state reaction method. The structural and electrical properties of the samples were characteri...

متن کامل

Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2.

We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_{2}As_{2} (transition temperature T_{c} = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the Fermi surface around the Brillouin-zone center is qualitatively similar to that of optimally doped Ba_{1-x}K_{x}Fe_{2}As_{2} (x = 0.4; T_{c}...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 105 3  شماره 

صفحات  -

تاریخ انتشار 2010